Mitigating Noise at Rail Transit Maintenance and Layover Facilities by the Use of Enclosures

Timothy Johnson

Harris Miller Miller & Hanson Inc.

TRB ADC40 Summer Meeting 2014

Portsmouth, NH

 Noise can be a significant issue at noise-sensitive receptors near rail transit maintenance and layover facilities

Noise sources:

- Idling locomotives
- Wheel squeal
- Car washers

• Mitigation options:

- Noise barriers
- Rail lubrication systems
- Sound insulation
- Enclosures

- Example #1: Commuter rail layover facility
 - Noise issue: Idling locomotives
- Example #2: Regional rail layover facility
 - Noise issue: Idling locomotives
- Example #3: Transit maintenance and storage yard
 - Noise issue: Wheel squeal from trains on curves

Example #1: Commuter Rail Layover Facility

- Located at the end of rail line
- Diesel locomotive hauled passenger trains
- Noise issues:
 - Train movements into and out of station
 - Locomotives continue to idle for period of time before shutdown for the night
 - Locomotives idle for period of time before they depart in the morning
 - Noise-sensitive receptors located close to idling locomotives

Example #1: Project Location

Example #1: Enclosure Design

- Existing noise measurements to determine impact criteria
- Impact assessment included the following:
 - Additional layover tracks at facility
 - Train movements into and out of facility
 - Idling locomotives
- Closest receptor < 200 feet from idling locomotives
- All four closest receptors impacted
- Recommended mitigation measure:
 - construct enclosure around idling locomotives

www.hmmh.com

Design features:

- Walls: SOUNDBLOX® Type Q 8-inch sound absorbing structural masonry units (optimum absorption at 125 Hz)
- Ceiling: Pyrok Acoustement 40 acoustical surfacing material on ceiling surfaces
- Exhaust:
 - Passive exhaust with large opening in roof
 - No added noise sources, but large opening in enclosure
 - Active exhaust with fans in the roof
 - Added noise sources

Example #1: Enclosure Effectiveness

Example #2: Regional Rail Layover Facility

- Located near residential community
- Diesel locomotive hauled passenger trains
- Noise issues:
 - Train movements into and out of layover facility
 - Locomotives continue to idle for period of time before shutdown for the night
 - Locomotives idle for period of time before they depart in the morning
 - Noise-sensitive receptors located close to idling locomotives

Example #2: Project Location

Example #2: Enclosure Design

- Impact assessment conducted to determine overall performance of enclosure
- Residential property line: < 100 feet from idling locomotives
- Acoustical design required composite Sound Transmission Class rating of STC-44 for entire enclosure
- Exhaust fan noise required to meet noise ordinance limit of 50 dBA

- Calculated building STC based on design
 - Walls: Butler metal wall with Amvic ICF (insulated concrete form) Block
 - Doors: Double Thermiser Insulated Rolling Doors
 - Roof: Insulated metal roof
 - Exhaust: Intake and exhaust openings
 - Office Space
- Exhaust fan noise projections conducted at nearest property line locations

Example #2: Enclosure Effectiveness

- STC rating for total composite building was STC-47
- Projected sound levels from fan noise at nearby property line locations ranged from 44 – 49 dBA

Example #3: Transit Maintenance and Storage Yard

- Heavy rail trains electrically powered
- Noise Issues:
 - Wheel squeal from trains traveling around curves in yard
 - Curve radius of 300 feet
 - Noise-sensitive receptors located close to curve in yard

Example #3: Project Location

Example #3: Enclosure Design

Example #3: Enclosure Design

Example #3: Acoustical Analysis

- 55 dBA Lmax criterion at property lines
- Residences located < 300 feet from curves
- Reference measurements of wheel squeal from curves
- Measurements in community
- Reverberant noise in enclosure

www.hmmh.com

Design features:

- Walls: Portions of CMU and metal panels
- Ceiling: metal panels
- Sound absorptive panels on all interior surfaces
- Passive exhaust with louvered penthouses on top of enclosure

- Post-construction noise measurement program
- Maximum sound levels at nearest residence (Site 2) ranged from 50 to 55 dBA
 - Background noise from nearby highways contributed to measured sound levels
- Average overall Lmax at Site 2 decreased from 64 dBA to 53 dBA (11 dBA improvement)
 - 18 dB reduction in 4,000 Hz octave-band
 - 19 dB reduction in 8,000 Hz octave-band